
Surviving Client/Server:
Managing User Logins, Part 2
by Steve Troxell

Last month, we began develop-
ment of the TLoginManager com-

ponent which consolidates and
centralizes our system login activi-
ties across several applications.
We built up the component’s
framework and partially imple-
mented the Login and Logout func-
tions which simply connected and
disconnected the calling applica-
tion’s native TDatabase component
and posted successful logins and
logouts to an audit trail table in our
database. This month, we’ll con-
tinue our work with the TLoginMan-
ager component by posting
unsuccessful logins to the audit
trail and detecting and responding
to expired passwords.

Our work in this issue follows
closely what we started last month
and in many cases we’ll be revising
code we first built in the last issue.
To save space, I’ll only show partial
code listings to point out changes
made to previous code.

The specific code changes for
this month’s discussion are shown
in red in the listings. I’ll trust you to
refer to the previous issue to re-
fresh yourself with what we were
doing. The complete code for the
TLoginManager system (including a
demo program) can be found on
this month’s disk in the SURVIVE
directory.

Posting Unsuccessful Logins
Whenever a user logs in or logs out
through TLoginManager, an audit
entry is posted to the AuditTrail
table. We would also like to post an
entry for every unsuccessful login
attempt as well. Supposedly, this
will reveal attempts to crack an
individual’s login because several
consecutive “bad logins” will ap-
pear for the same username. The
problem we face with this is that if
we don’t have a valid login, how
can we write something to the
database?

The solution we’ll devise pro-
vides a fixed user account with
which our applications could con-
nect to the database for their own
purposes independently of the
user supplied login information.
This account would have a
username that would not conflict
with a valid user of the system; for
example something gibberish or
something blatantly proprietary
like “SYSTEM”. Also, the password
would not be known by the
customers, only the developers.

Having a separate system ac-
count opens the possibility for ad-
ditional layers of data security.
We’ll be using the system account
to send queries posting audit trail
entries. Because of this, we could
revoke write permissions to the
AuditTrail table from all normal us-
ers and only grant them to the sys-
tem account. This way users
cannot log in through ISQL or
ODBC and modify the audit trail,
but your applications can post
records there unimpeded. Note
that this can also be achieved by
using a stored procedure to write
to the audit trail since they can
access database tables inde-
pendently of the permissions of the
user that executed them (see Issue
6, February 1996).

To implement the system ac-
count, we’ll add a TDatabase compo-
nent in the LoginDM data module
with the properties shown in

Figure 1. Next we’ll attach the
qryPostAuditTrail query compo-
nent to this database by setting its
DatabaseName property to Inter-
nalDB. We’ll want to assign the login
account at runtime in the TLogin-
Manager.Create method as shown in
Listing 1.

In this case SystemAccountUser-
Name and SystemAccountPassword are
simply constants within the data
module for the sake of illustration.
In a production system, you would
want to externalize these values;
possibly by supplying them
through a DLL. In this way you can
take more elaborate steps to en-
crypt the account information and
also leave open the possibility of
changing the system account

➤ Figure 1

const
 SystemAccountUserName = ’SYSTEM’;
 SystemAccountPassword = ’onomatopoeia’;
 . . .
constructor TLoginDM.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 . . .
 with dbInternal do begin
 Params.Values[’USER NAME’] := SystemAccountUserName;
 Params.Values[’PASSWORD’] := SystemAccountPassword;
 end;
end;

➤ Listing 1

January 1997 The Delphi Magazine 47

without having to re-compile your
applications.

Finally, we need to associate the
TDatabase component with the ac-
tual database. This obviously
would be the same database that
the user is attempting to log into,
so we’ll just intervene when the
calling application registers its
TDatabase component by setting
the MainDB property (see Listing 2).
We’ll also have to adjust our logic
that loops through all the data
module components and links
them to the application’s TDat-
abase. We specifically linked our
qryPostAuditTrail query to the in-
ternal database component at de-
sign time and we don’t want it to be
overridden at runtime.

Now, whenever we post an entry
in the audit trail through the qry-
PostAuditTrail query, we will open
a new database connection with
the system account, write the re-
cord, then close the connection.
The final touch is to add the call to
post the audit entry when an un-
successful login is made as shown
in Listing 3. Notice that we trap and
discard any exceptions that might
be raised during the posting of the
bad login entry to the audit trail.
This is done to cover the possibil-
ity that the unsuccessful login
might be the result of the database
server itself being down or unavail-
able. In that case, the posting of the
audit trail entry would be impossi-
ble and would itself produce an
exception.

Changing User Passwords
One of the features of the login sys-
tem we have developed is that we
can require any individual user’s
password to expire after a given
number of days have elapsed. The
“lifespan” of the password can vary
from user to user if we so desire. To
accommodate this, for each user
we store the interval of their pass-
word lifespan in days and the date
of their last password change. With
this, our login manager can detect
when passwords have expired and
require that the user change their
password before completing the
login. In addition, we would like to
allow the user to voluntarily
change their password at any time.

Some backend products have
this password functionality built
in, some don’t. Even for those that
do, your users are likely to see the
backend vendor’s error messages
and dialogs. By implementing this
functionality ourselves, we pro-
vide the features even if the back-
end vendor does not, and we
present a consistent, seamless
interface to the users.

However, keep in mind that we
are relying on the RDBMS to store
and validate usernames and pass-
words when we connect to the

database, so we must interface to
the RDBMS to actually perform the
password change. Exactly how this
is done will vary greatly from one
backend to another. For that rea-
son, we will implement the me-
chanics of changing the user’s
password within a DLL which we
could customize for any particular
backend we wanted.

Microsoft SQL Server allows
passwords to be changed via the
sp_password system procedure. In
addition, we must change the value
of DateLastPasswordChange for the

procedure TLoginManager.Login(UserName, Password: String);
var Cancel: Boolean;
begin
 Logout;
 FUsername := Username;
 FPassword := Uppercase(Password);
 try
 Connect;
 {. . . skip a bunch of junk here }
 except
 on E: Exception do begin { Failed login attempt }
 Application.HandleException(Self);
 Disconnect;
 if Assigned(FOnBadLogin) then
 FOnBadLogin(Self);
 { Post bad login event }
 try
 LoginDM.PostAuditTrail(evtLoginFail, ’Username: ’ + FUsername);
 except
 end;
 {. . . skip some more junk here }
 end;
 end;
end;

➤ Listing 3

create procedure ChangePassword(
 @Username varchar(30),
 @OldPassword varchar(30),
 @NewPassword varchar(30))
as
begin
 declare @Result integer
 execute @Result = sp_password @OldPassword, @NewPassword
 if @Result <> 0
 begin
 raiserror 50001 “Could not change user password”
 return
 end
 update Users
 set DateLastPasswordChange = getdate()
 where Username = @Username
end

➤ Listing 4

procedure TLoginManager.SetMainDB(Value: TDatabase);
var I: Integer;
begin
 if Value <> FMainDB then begin
 FMainDB := Value;
 LoginDM.dbInternal.AliasName := FMainDB.AliasName;
 { Initialize the dataset components in the data module }
 for I := 0 to LoginDM.ComponentCount - 1 do
 if LoginDM.Components[I] is TDBDataSet then
 with TDBDataSet(LoginDM.Components[I]) do begin
 if DatabaseName = ’’ then begin
 Active := False;
 DatabaseName := FMainDB.DatabaseName;
 end;
 end;
 end;
end;

➤ Listing 2

48 The Delphi Magazine Issue 17

current user in our Users table.
We’ll encapsulate all this within a
stored procedure as shown in
Listing 4. Listing 5 shows the
source for the DLL (PASS-
WORD.DLL) which we’ll use to call
our stored procedure. Listing 6
shows the interface unit we’ll use
to communicate with this DLL from
the main application.

In Listing 5, you’ll see we’re pass-
ing in the alias name for the data-
base we’re connected to and
creating an independent connec-
tion from within the DLL. We can’t
simply pass our existing TDatabase
component into the DLL because
referencing an application’s VCL
objects from within a DLL can cre-
ate nasty problems. The user’s old
password is supplied as well:
partly because some backend
products require this to perform a
password change and partly to al-
low the DLL to centralized the busi-
ness rules for changing passwords.
For example, users should not be
allowed to change their password
to the same value as their existing
password.

The next step is to integrate the
DLL with TLoginManager. Listing 7
shows a new public method called
ChangePassword. This method can
be called from the application at
any time to allow for voluntary
password changes. Notice that we
call TLoginManager.Connect after
changing the password. This termi-
nates our current database con-
nection and re-establishes a new
one under the new password. This
is necessary since Delphi may later
attempt to open additional data-
base connections for multiple con-
current datasets, which would fail
because the password stored
within the TDatabase.Params prop-
erty would still be the old pass-
word. The Connect method ensures
the correct password is available.

Because the TDatabase compo-
nent is momentarily disconnected,
any datasets that are active at the
time will be closed. You’ll have to
guard against this when calling
ChangePassword.

Now we must provide a dialog
with which the user may enter a
new password. Figure 2 and Listing
8 show the dialog unit which is

{ DLL Project File: }
library Password;
uses Pass1;
exports ChangePassword;
end.

{ DLL Unit File: }
unit Pass1;
interface
uses
 SysUtils, DB, DBTables;
function ChangePassword(iAliasName : PChar;
 iUserName : PChar;
 iOldPassword : PChar;
 iNewPassword : PChar;
 var oErrMsg : PChar): Word; export;
implementation
uses
 PassInt;
type
 ESamePassword = class(Exception);
 EErrorChangingPassword = class(Exception);
function ChangePassword;
var
 TempDatabase: TDatabase;
 TempQuery: TQuery;
begin
 Result := cpSuccess;
 StrPCopy(oErrMsg, ’’);
 try
 { Validate the new password }
 if StrIComp(iOldPassword, iNewPassword) = 0 then
 raise ESamePassword.Create(’’);
 { Create a TDatabase structure to connect with }
 TempDatabase := TDatabase.Create(nil);
 try
 with TempDatabase do begin
 AliasName := StrPas(iAliasName);
 DatabaseName := ’PasswordChangeDB’;
 Params.Values[’USER NAME’] := StrPas(iUserName);
 Params.Values[’PASSWORD’] := StrPas(iOldPassword);
 LoginPrompt := False;
 Connected := True;
 end;
 { Create a query to run the system procedure with }
 TempQuery := TQuery.Create(nil);
 with TempQuery do begin
 try
 DatabaseName := TempDatabase.DatabaseName;
 { Change the password in the RDBMS and set date of change }
 SQL.Add(Format(’execute ChangePassword %s, %s, %s’, [StrPas(iUserName),
 StrPas(iOldPassword), StrPas(iNewPassword)]));
 try
 ExecSQL;
 except
 raise EErrorChangingPassword.Create(’’);
 end;
 finally
 Free;
 end;
 end;
 finally
 TempDatabase.Free;
 end;
 except
 on ESamePassword do begin
 Result := cpSamePassword;
 StrPCopy(oErrMsg, ’New password cannot be the same as the old password’);
 end;
 on EErrorChangingPassword do begin
 Result := cpErrorChangingPassword;
 StrPCopy(oErrMsg, ’Error changing password’);
 end;
 on E: Exception do begin
 Result := cpUnknown;
 StrPCopy(oErrMsg, E.Message);
 end;
 end;
end;
end.

➤ Listing 5

unit PassInt;
interface
const
 cpSuccess = 0;
 cpErrorChangingPassword = 1;
 cpSamePassword = 2;
 cpUnknown = 999;
function ChangePassword(AliasName : PChar; UserName : PChar; OldPassword : PChar;
 NewPassword : PChar; var ErrMsg : PChar): Word; external ’PASSWORD.DLL’;
implementation
end.

➤ Listing 6

January 1997 The Delphi Magazine 49

compiled into our main applica-
tion. For the sake of brevity, I have
omitted the interface section for
this unit. It simply declares a form
class called TdlgPassword with no
special methods or properties. The
standalone procedures Launch-
ChangePasswordDialog and Launch-
PasswordExpiredDialog are expor-
ted by the unit. These are the rou-
tines which our application calls to
show this dialog; in the case of an
expired password, we only change
the dialog caption. Note that the
dialog itself is responsible for call-
ing TLoginManager.ChangePassword
to effect the change, and that the
dialog does not close unless the
password change completes suc-
cessfully or the user explicitly
cancels it.

Now the main application has
only to call LaunchChangePassword-
Dialog to provide a voluntary
change password feature.

Expired Passwords
Dealing with expired passwords is
a bit more involved. First we must
detect that a user’s password has
expired. This is done in the LoginDM
data module’s GetUserValues
method. Last month, we simply
hard-coded the PasswordExpired
parameter to False. The correct
logic is shown in Listing 9 where we
examine the DateLastPassword-
Change and PasswordLifespan fields
from the Users table. We’ve allowed
for a null in DateLastPasswordChange
to force a new password (for exam-
ple, when the user account is first
set up by the administrator, the
user would be given a temporary
password which must be changed
immediately upon first login). Also,
a null value in the PasswordLifespan
field indicates the password never
expires for this user.

When PasswordExpired is True, we
must signal the calling application
to display its “change password”
dialog, so we’ll add an event han-
dler (see Listing 10). A partial list-
ing of TLoginManager.Login is shown
in Listing 11. As you can see, imme-
diately after calling GetUserValues,
we check to see if the password has
expired. If so, we fire the event han-
dler and let the application allow
the user to enter a new password

➤ Figure 2

procedure TLoginManager.ChangePassword(OldPassword, NewPassword: string);
var StatusText: PChar;
begin
 if Uppercase(OldPassword) <> FPassword then
 raise Exception.Create(
 ’Unable to change password — current password incorrect.’);
 StatusText := StrAlloc(255);
 try
 if PassInt.ChangePassword(PChar(FMainDB.AliasName), PChar(FUsername),
 PChar(OldPassword), PChar(NewPassword), StatusText) <> 0 then
 raise Exception.Create(StrPas(StatusText));
 { Set the new password }
 FPassword := Uppercase(NewPassword);
 { Reconnect database(s) with new password }
 Connect;
 { Post a “change password” in the audit trail }
 LoginDM.PostAuditTrail(evtChangePassword, ’’);
 finally
 StrDispose(StatusText);
 end;
end;

➤ Listing 7

unit fmPasswd;
. . . interface omitted . . .
implementation
{$R *.DFM}
uses
 Login;
function LaunchChangePasswordDialog;
begin
 dlgPassword.Caption := ’Change Password’;
 Result := dlgPassword.ShowModal;
end;
function LaunchPasswordExpiredDialog;
begin
 dlgPassword.Caption := ’Password Expired’;
 Result := dlgPassword.ShowModal;
end;
procedure TdlgPassword.btnOKClick(Sender: TObject);
begin
 if edtNewPassword.Text <> edtConfirmPassword.Text then
 raise Exception.Create(’The confirmation password is not correct.’);
 LoginManager.ChangePassword(edtOldPassword.Text, edtNewPassword.Text);
 ModalResult := mrOK;
end;
procedure TdlgPassword.FormShow(Sender: TObject);
begin
 edtOldPassword.Text := ’’;
 edtNewPassword.Text := ’’;
 edtConfirmPassword.Text := ’’;
 edtOldPassword.SetFocus;
end;
end.

➤ Listing 8

{ if DateLastPasswordChange is null, then password change forced }
if FieldByName(’DateLastPasswordChange’).IsNull then
 PasswordExpired := True
else
 { if PasswordLifespan is null, then password never expires }
 if FieldByName(’PasswordLifespan’).IsNull then
 PasswordExpired := False
 else
 PasswordExpired := Date - FieldByName(’DateLastPasswordChange’).AsDateTime >=
 FieldByName(’PasswordLifespan’).AsInteger;

➤ Listing 9

50 The Delphi Magazine Issue 17

(Listing 12). If they don’t, then we
terminate the login process. Re-
member that we have an exception
handler within the Login method
which will disconnect the database
if an exception is raised.

Errata
There was a small oversight in last
month’s code. In the data module’s
GetUserValues method, if the user-
name used to log in is not found in
the Users table, it should be treated
as an unsuccessful login. To cor-
rect this, we simply check for EOF
after calling qryGetUserValues.Open
and raise an exception as shown in
Listing 13.

Next Month
TLoginManager is really taking shape
now! Next month, we’ll finish our
work by allowing runtime over-
rides for the database and server
defined in the alias. This is very
useful in environments where mul-
tiple databases or servers may be
employed for development, test-
ing, customer demos, etc. Also,
we’ll see what’s involved in han-
dling multiple databases from a
single application.

Steve Troxell is a Senior Software
Engineer with TurboPower
Software. He can be reached by
email at stevet@tpower.com or on
CompuServe at 74071,2207

{ New Event Handler: }
TPasswordExpiredEvent =
 procedure (Sender: TObject; var Cancel: Boolean) of object;

{ Declared in TLoginManager: }
type
 TLoginManager = class(Tcomponent)
 protected
 . . .
 FOnPasswordExpired: TPasswordExpiredEvent;
 public
 . . .
 property OnPasswordExpired: TPasswordExpiredEvent
 read FOnPasswordExpired write FOnPasswordExpired;
 end;

➤ Listing 10

procedure TLoginManager.Login(UserName, Password: String);
var
 Cancel: Boolean;
begin
 . . .
 FUsername := Username;
 FPassword := Uppercase(Password);
 Connect;
 LoginDM.GetUserValues(FUserID, FUserFirstName, FUserLastName,
 FDateLastLogin, FPasswordExpired);
 FUserFullName := FUserFirstName + ’ ’ + FUserLastName;
 { Determine if user’s password has expired... }
 if FPasswordExpired then begin
 Cancel := True;
 if Assigned(FOnPasswordExpired) then
 FOnPasswordExpired(Self, OldPassword, NewPassword, Cancel);
 if Cancel then
 raise Exception.Create(
 ’Unable to login—user’’s password has expired’);
 end;
 . . .
end;

➤ Listing 11

procedure TfrmMain.LoginManagerPasswordExpired(Sender: TObject;
 var Cancel: Boolean);
begin
 Cancel := LaunchPasswordExpiredDialog <> mrOK;
end;

➤ Listing 12

with qryGetUserValues do begin
 Close;
 ParamByName(’Username’).AsString := FLogin.Username;
 Open;
 try
 if Eof then
 raise Exception.Create(’Invalid login.’);
 . . .

➤ Listing 13

January 1997 The Delphi Magazine 51

	Posting Unsuccessful Logins
	Changing User Passwords
	Expired Passwords
	Errata
	Next Month

